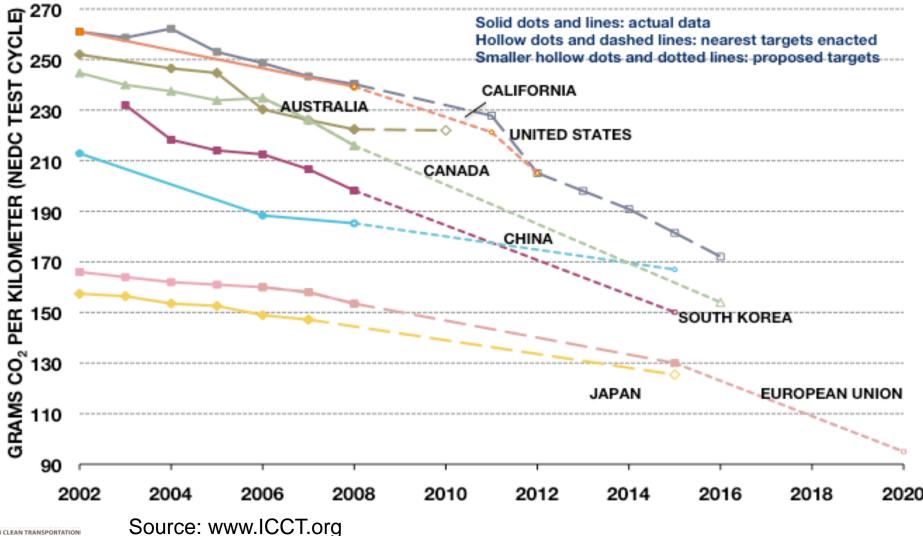
# International best practices in cutting transport's climate emissions

### Low Carbon Vehicle Partnership 7<sup>th</sup> Annual Conference

Drew Kodjak, Executive Director Twickenham Stadium, London July 14, 2010




### **Outline of Major Points**

- Definition of global best practices
  Europe plays key role
- Policy Case Studies
  - Passenger Vehicle Emission Standards
    - Europe and Japan lead world with best standards
  - Regulatory Design
    - US showing leadership plus summary of latest study on mass reduction opportunities and cost
  - Commercial Trucks
    - Japan in lead with US and China soon to follow plus summary of NAS study on technology potential for US trucks

 Our Challenge: Developing best practices and then quickly spreading them across the globe.
Slide 2

### Europe a global leader in CO2 emission standards

#### PASSENGER VEHICLE GHG EMISSIONS FLEET AVERAGE PERFORMANCE AND STANDARDS BY REGION



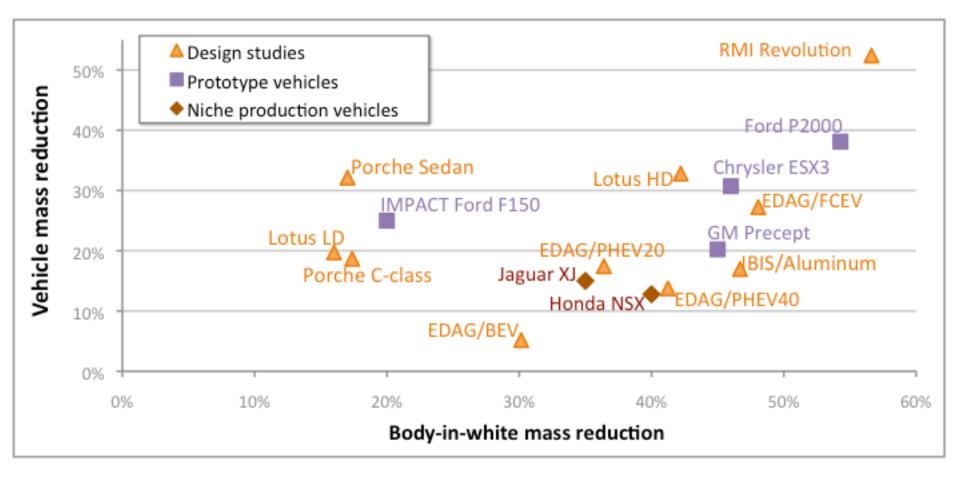
ON CLEAN TRANSPORTATION

### **Vehicle Efficiency Varies with Mass & Engine Size**

|                                 | Japan | EU    | US    |
|---------------------------------|-------|-------|-------|
| New cars fleet Average          |       |       |       |
| Weight (kg)                     | 1,280 | 1,253 | 1,863 |
| Engine Size (I)                 | 1.5   | 1.6   | 3.3   |
| Fuel consumption (mpg)          | 41.5  | 39.8  | 26.4  |
| CO <sub>2</sub> emission (g/km) | 132   | 146   | 208   |

| Representative cars             |                            |                          |                               |  |  |  |  |
|---------------------------------|----------------------------|--------------------------|-------------------------------|--|--|--|--|
|                                 | Honda Fit<br>M5, 1.5 Liter | VW Golf<br>M5, 1.6 Liter | Chrysler 300<br>L4, 3.5 Liter |  |  |  |  |
| Weight (kg)                     | 1,250                      | 1,232                    | 1,818                         |  |  |  |  |
| Engine Size (I)                 | 1.5                        | 1.6                      | 3.5                           |  |  |  |  |
| Fuel consumption (mpg)          | 41.2                       | 35.0                     | 25.8                          |  |  |  |  |
| CO <sub>2</sub> emission (g/km) | 133                        | 157                      | 213                           |  |  |  |  |

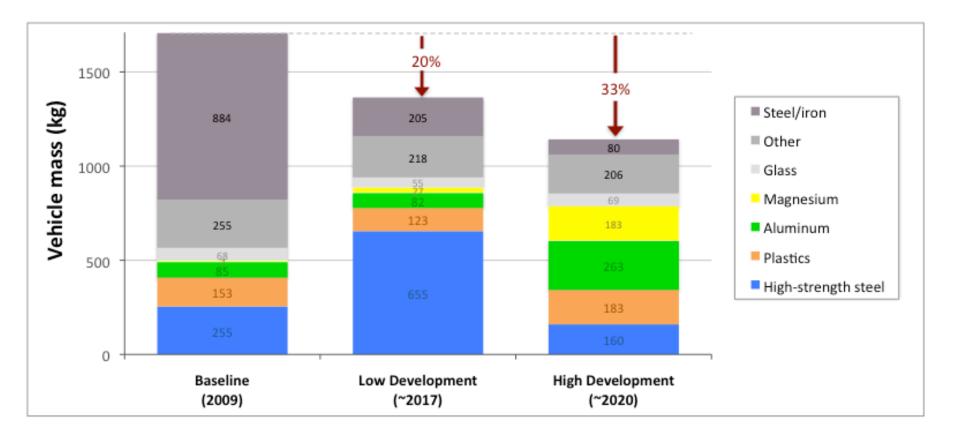



### **Regulatory Best Practice – Vary Standard by SIZE**

 $\rightarrow$  ~ Half world auto market uses weight-based scaling factors which neutralizes regulatory incentive for mass reduction. US has best practice with size-based "scaling factor".

| Country/Region | Automobile 2007<br>sales in million/year<br>(and world share) | Regulated metric                       | Form of Standard                                    | Program details,<br>reduction in CO <sub>2</sub> -per-<br>distance emissions |
|----------------|---------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|
| European Union | 23 (32%)                                                      | GHG emission<br>(CO <sub>2</sub> e/km) | Weight, continuous                                  | 40% reduction, MY 2008-2020<br>EU NEDC cycle                                 |
| United States  | 17 (24%)                                                      | Fuel economy (mi/gal)                  | Size-based, continuous                              | 20% reduction, MY 2011-2016<br>U.S. FTP testing                              |
|                |                                                               | GHG emission (CO <sub>2</sub> e/mi)    |                                                     |                                                                              |
| Japan          | 6 (8%)                                                        | Fuel economy (km/L)                    | Weight classes                                      | 19% reduction, MY 2010-2015<br>Japan 10-15 cycle                             |
| China          | 5 (7%)                                                        | Fuel consump.<br>(L/100km)             | Per vehicle, weight class<br>→ Average weight class | 12% reduction, MY2008-2015<br>EU NEDC cycle                                  |
| California     | 1.8 (3%)                                                      | GHG emission (CO <sub>2</sub> e/mi)    | Vehicle class                                       | 30% reduction, MY 2009-2016<br>U.S. FTP testing                              |
| Canada         | 1.6 (2%)                                                      | Fuel consump. (gal/mi)                 | Size-based, continuous                              | Harmonized to U.S. stds<br>U.S. FTP testing                                  |
|                |                                                               | GHG emission (CO <sub>2</sub> e/mi)    |                                                     |                                                                              |
| Mexico         | 1.0 (1%)                                                      | твр                                    | TBD                                                 | TBD                                                                          |
| Australia      | 0.9 (1%)                                                      | Fuel consump.<br>(L/100km)             | Fleet average                                       | 10% reduction, MY 2004-2010<br>EU NEDC                                       |
| South Korea    | 0.5 (1%)                                                      | Fuel economy (km/L)                    | Weight-based, split by engine size                  | 13% reduction, MY 2012-2015<br>U.S. FTP testing                              |
|                |                                                               | GHG emission (CO <sub>2</sub> /km)     |                                                     |                                                                              |
| Taiwan         | 0.3 (0.5%)                                                    | Fuel economy (km/L)                    | Engine size based                                   | U.S. FTP testing                                                             |

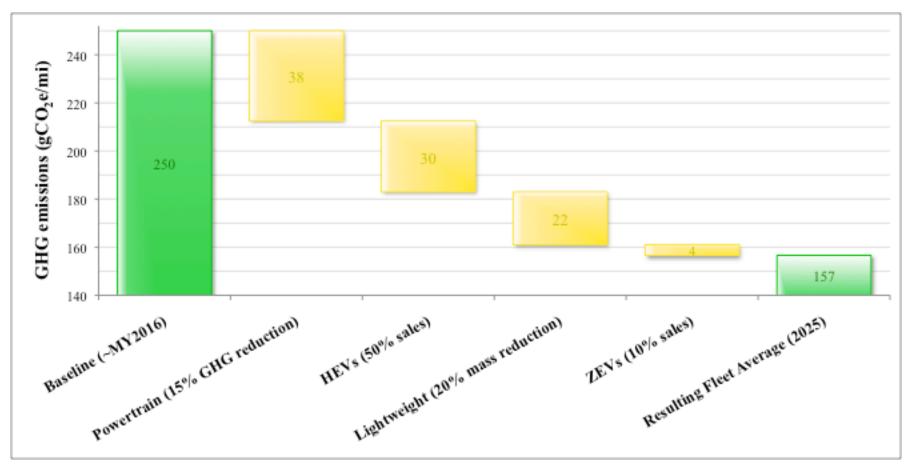



## Results from mass-optimized vehicles & studies show mid-range of 10 – 40% mass reduction.



Source: Lutsey, 2010. Review of technical literature and trends related to automobile mass-reduction technology, prepared for California Air Resources Board, Sacramento, CA.



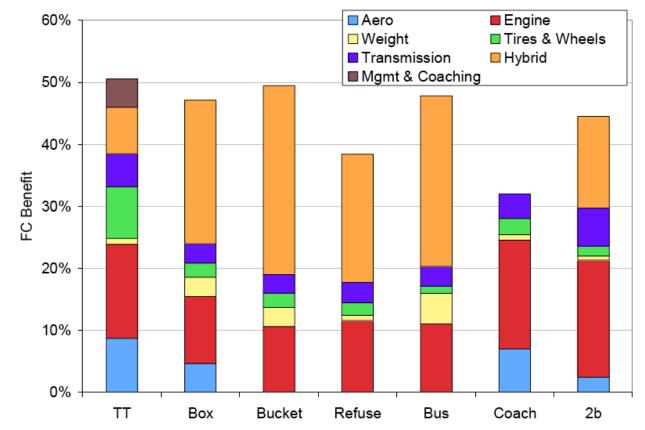

## US and EU Studies - Material composition of mass-optimized passenger vehicle body design



Source: Lotus Engineering, 2010. An Assessment of Mass Reduction Opportunities for a 2017 – 2020 Model Year Vehicle Program. Available at: www.theicct.org.

ON CLEAN TRANSPORTATION

### The Importance of Mass Reduction: Potential improvements in CA market (~2025)




Note: 250 gCO2/mi (US test) is 172 gCO2/km (NEDC) &157 gCO2/mi (US test) is 108 gCO2/km (NEDC)



#### Source: Internal ICCT Analysis

### **Best Practices for HDVs are Evolving** Potential Improvements in US HDV Fleet by Vehicle Type

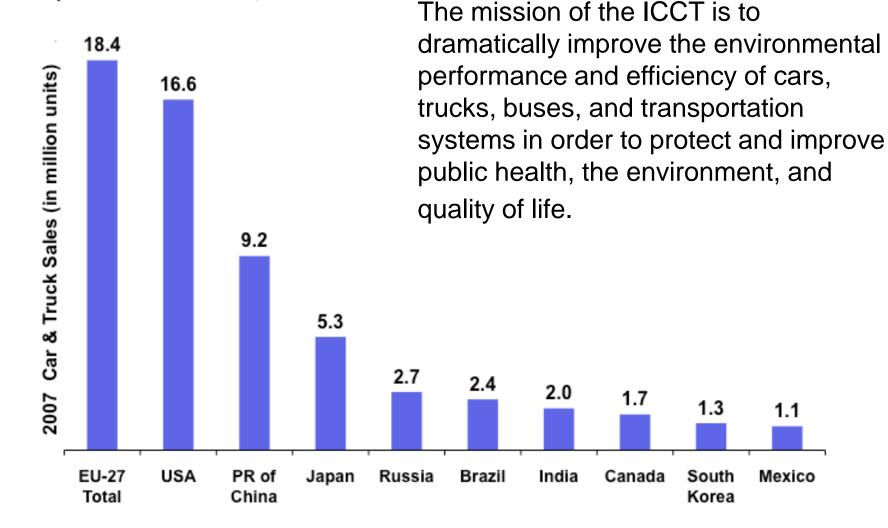


**FIGURE S-1.** Comparison of 2015-2020 new vehicle potential fuel-saving technologies for seven vehicle types: tractor trailer (TT), Class 3-6 box (box), Class 3-6 bucket (bucket), Class refuse (refuse), transit bus (bus), motor coach (coach), and Class 2b pickups and vans (2b).



National Academies of Science, 2010. Technologies and Approaches to Reducing The Fuel Consumption of Medium and Heavy-duty Vehicles.

### Summing up and looking into the future


- To address climate change, all major vehicle markets should adopt the following standards over next ~5 years.
  - GHG standards for all modes (PVs, HDVs).
  - Fiscal policies aligned with GHG emissions
  - Genuine low carbon fuel policies (in need of best practices here).
  - Aviation and marine GHG policies set by international bodies for existing and new fleets.
  - Many other important supporting policies (vehicle labeling, technology R&D, consumer incentives, etc)
- Europe will play a key role in development of global best practices.



### The International Council on Clean Transportation (ICCT)

Top Ten Vehicle Markets, 2007

ON CLEAN TRANSPORTATION



1.1

Drew Kodjak Executive Director

### International Council on Clean Transportation (ICCT) 1225 Eye St. NW Suite 900 Washington D.C. 20005

drew@theicct.org

